

MOTION

CONTENTS

- Introduction
- Types of motion
- Terms used to define motion
- Equations of Motion
- Body falling freely under gravity
- Various Graphs Related to Motion
- Circular Motion

INTRODUCTION

When a body does not change its position with time, we can say that the body is at **rest**, while if a body changes its position with time, it is said to be in **motion**.

- An object is said to be a **point object** if it changes its position by distances which are much greater than its size.
- A point or some stationary object with respect to which a body continuously changes its position in the state of motion is known as origin or reference point.

TYPES OF MOTION

According to Directions

- One dimensional motion is the motion of a particle moving along a straight line.
- Two dimensional motion A particle moving along a curved path in a plane has 2-dimensional motion.
- Three dimensional motion Particle moving randomly in space has 3-dimensional motion.

According to state of motion

Uniform Motion

- A body is said to be in a state of uniform motion if it travels equal distances in equal intervals of time.
- If the time distance graph is a straight line the motion is said to be uniform motion.

Non-uniform motion

1.16

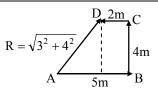
- A body has a non-uniform motion if it travels unequal distances in equal intervals of time.
 Ex. a freely falling body.
- Time distance graph for a body with nonuniform motion is a curved line.

TERMS USED TO DEFINE MOTION

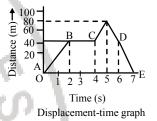
- (i) Distance and displacement
- (ii) Speed and velocity
- (iii) Acceleration

(i) Distance & Displacement

The path length between the initial and final positions of the particle gives the **distance** covered by the particle.


- The minimum distance between the initial and final positions of a body during that time interval is called **displacement**
- Distance and displacement both are measured in *meter* in m.k.s. system.

Difference between distance and displacement


- Distance travelled is a scalar quantity while displacement is a vector quantity.
- When a body continuously moves in the same straight line and in the same direction then displacement will be equal to the distance travelled. But if the body changes its direction while moving, then the displacement is smaller than the distance travelled.

Displacement ≤ Distance

- Displacement in any interval of time may be zero, positive or negative where as distance cannot be negative..
- Ex.1 A person travels a distance of 5 m towards east, then 4 m towards north and then 2 m towards west.
 - (i) Calculate the total distance travelled.
 - (ii) Calculate the resultant displacement.
- **Sol.** (i) Total distance travelled by the person
 - = 5 m + 4 m + 2 m = 11 m
 - (ii) To calculate the resultant displacement, we choose a convenient scale, where 1 cm represents 1 m. We draw a 5 cm long line AB towards east and then 4 cm long line BC towards north. Finally, a 2 cm long line CD towards west. The resultant displacement is calculated by joining the initial position A to the final position D. We measure AB = 5 cm. Since 1 cm = 1 m
 - \therefore 5 cm = 5 m
 - Hence, the displacement of the person = 5m towards AD.

- Ex.2 A body is moving in a straight line. Its distances from origin are shown with time in Fig. A, B, C, D and E represent different parts of its motion. Find the following :
 - (i) Displacement of the body in first 2 seconds.
 - (ii) Total distance travelled in 7 seconds.
 - (iii) Displacement in 7 seconds

- **Sol.** (i) Displacement of the body in first 2s = 40m
 - (ii) From t = 0 to t = 7 s, the body has moved a distance of 80 m from origin and it has again come back to origin. Therefore, the total distance covered = $80 \times 2 = 160$ m
- (iii) Since the body has come back to its initial position, the displacement is zero.

(ii) Speed and Velocity

100

- The 'distance' travelled by a body in unit time interval is called its **speed**. When the position of a body changes in particular direction, then speed is denoted by 'velocity'. i.e. the rate of change of displacement of a body is called its Velocity.
- Speed is a scalar quantity while velocity is a vector quantity.
- Speed = $\frac{\text{distance}}{\text{time}}$
- Velocity = $\frac{\text{displacement}}{\text{time}}$
- Unit : In M.K.S. system = ms^{-1}

- In C.G.S. system = cm/s
- If time distance graph is given then speed can be given by the slope of the line, at given time

$$v = \frac{\Delta s}{\Delta t} = slope$$

 The area of velocity time graph gives displacement travelled.

Types of speed

(a) Average and Instantaneous speed Average speed :

It is obtained by dividing the total distance travelled by the total time interval. i.e.

average speed =
$$\frac{\text{total distance}}{\text{total time}}$$

Average velocity = $\frac{\text{displacement}}{\text{total time}}$

- Average speed is a scalar, while average velocity is a vector.
- For a moving body average speed can never be -ve or zero (unless t → ∞), while average

velocity can be i.e. $v_{av} > 0$ while $\vec{v}_{av} > = \text{ or } < 0$

- In general average speed is not equal to magnitude of average velocity. However it can be so if the motion is along a straight line without change in direction
- ♦ If a particle travels distances L₁, L₂, L₃ at speeds v₁, v₂, v₃ etc respectively, then

$$v_{av} = \frac{\Delta s}{\Delta t} = \frac{L_1 + L_2 + \dots + L_n}{\frac{L_1}{v_1} + \frac{L_2}{v_2} + \dots + \frac{L_n}{v_n}} = \frac{\sum Li}{\sum \frac{L_i}{v_i}}$$

♦ If a particle travels at speeds v₁, v₂ etc for intervals t₁, t₂ etc respectively, then

$$v_{av} = \frac{v_1 t_1 + v_2 t_2 + \dots}{t_1 + t_2 + \dots} = \frac{\sum v_1 t_1}{\sum t_1}$$

Instantaneous speed :

The speed of a body at a particular instant of time is called its instantaneous speed.

$$= \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = \frac{ds}{dt}$$

(b) Uniform and Non uniform speed

Uniform speed :

If an object covers equal distance in equal interval of time, then time speed graph of an object is a straight line parallel to time axis then body is moving with a uniform speed.

Non-uniform speed :

If the speed of a body is changing with respect to time it is moving with a nonuniform speed.

x.3 The distance between two points A and B is 100 m. A person moves from A to B with a speed of 20 m/s and from B to A with a speed of 25 m/s. Calculate average speed and average velocity.

Sol. (i) Distance from A to B = 100 m

Distance from B to A = 100 m

Thus, total distance = 200 m

Time taken to move from A to B, is given by

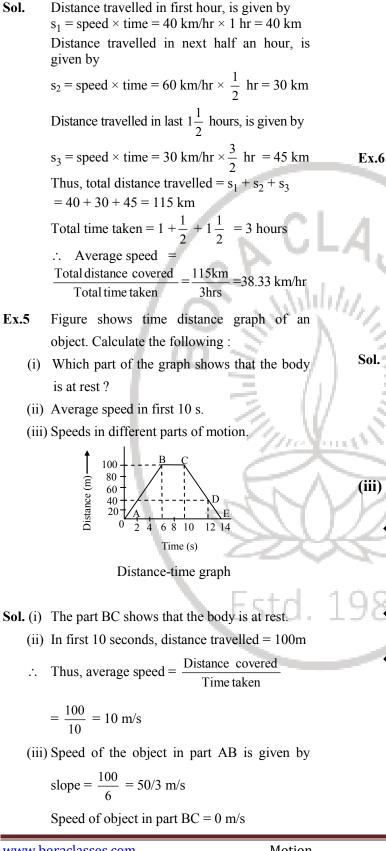
$$t_1 = \frac{\text{distance}}{\text{velocity}} = \frac{100}{20} = 5 \text{ seconds}$$

Time taken from B to A, is given by

$$= \frac{\text{distance}}{\text{velocity}} = \frac{100}{25} = 4 \text{ seconds}$$

Total time taken = $t_1 + t_2 = 5 + 4 = 9$ sec.

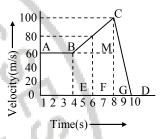
: Average speed of the person


t₂

$$\frac{\text{Total distance covered}}{\text{Total time taken}} = \frac{200}{9} \text{ m/s} = 22.2 \text{ m/s}$$

 (ii) Since person comes back to initial position A, displacement will be zero, resulting zero average velocity.

Ex.4 A car moves with a speed of 40 km/hr for first hour, then with a speed of 60 km/hr for next half hour and finally with a speed of 30 km/hr for next $1\frac{1}{2}$ hours. Calculate the average speed of the car.


Speed of the object in part CD

$$=\frac{100-40}{12-10}=\frac{60}{2}=30$$
 m/s

Speed of object in part DE

$$=\frac{40-0}{14-12} = \frac{40}{2} = 20$$
m/s

Time-velocity graph of a particle is shown in Figure. Calculate the distance travelled in first seconds.

Distance travelled in first 8s is given by area OABCG = area of rectangle OAMG

+ area of triangle BMC

$$= 8 \times 60 + \frac{1}{2} \times 4 \times 40 = 480 + 80 = 560 \text{ m}.$$

(iii) Acceleration

◆ Rate of change of velocity is called acceleration. It is a vector quantity

i.e.
$$a = \frac{v - u}{v}$$

Unit of acceleration = m/s^2 or ms^{-2}

Types of acceleration

Uniform & Non uniform acceleration **Uniform acceleration**

If a body travels in a straight line and its velocity increases by equal amounts in equal intervals of time then it is said to be in state of uniform acceleration.

e.g. motion of a freely falling body.

Non uniform acceleration

A body has a non-uniform acceleration if its velocity increases by unequal amounts in equal intervals of time.

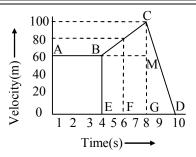
Instantaneous acceleration :

The acceleration of a body at any instant is called its instantaneous acceleration.

- If the velocity of a body decreases, then it will experience a negative acceleration which is called deceleration or retardation.
- Acceleration is determined by the slope of time-velocity graph.

$$\tan \theta = \frac{\mathrm{d}v}{\mathrm{d}t}$$

- (i) If the time velocity graph is a straight line, acceleration remains constants.
- (ii) If the slope of the straight line is positive, positive acceleration occurs.
- (iii) If the slope of the straight line is negative, negative acceleration or retardation occurs.
- Ex.7 Time-velocity graph of a body is shown in the figure. Find its acceleration in m/s².
- **Sol.** As it is clear from the figure,
 - At t = 0 s, v = 20 m/s At t = 4 s, v = 80 m/s


At
$$t = 4 s$$
, $v = 80 t$

 $\therefore \quad \text{Acceleration, a} = \frac{\text{Change in velocity}}{\text{Time interval}}$

$$\frac{80}{40} = \frac{v_2 - v_1}{1 + 2 + 3 + 4} = \frac{(80 - 20) \text{ m/s}}{150 \text{ m/s}^2}$$

$$\frac{1}{\Delta t} = \frac{1}{t_2 - t_1} = \frac{1}{(4 - 0)}$$

Ex.8 Time-velocity graph of a particle is shown in figure. Find its instantaneous acceleration at following intervals :

(i) at t = 3s(ii) at t = 6s

(iii) at t = 9s

Ex.9

 10^{11}

Sol.(i) Instantaneous acceleration at t = 3s, is given by

a = slope of line AB = zero

(ii) Instantaneous acceleration at t = 6 s, is given by a = slope of line

$$BC = \frac{CM}{BM} = \frac{100 - 60}{8 - 4} = -10 \text{ m/s}^2$$

(iii) Instantaneous acceleration at t = 9 s, is given

by a = slope of line CD =
$$\frac{0 - 100}{10 - 8}$$
 = -50 m/s²

Starting from rest, Deepak paddles his bicycle to attain a velocity of 6 m/s in 30 seconds then he applies brakes so that the velocity of the bicycle comes down to 4 m/s in the next 5 seconds. Calculate the acceleration of the bicycle in both the cases.

Sol. (i) Initial velocity, u = 0, final velocity,

v = 6 m/s, time, t = 30 s

Using the equation v = u + at, we have

 $a = \frac{v - u}{t}$

substituting the given values of u, v and t in the above equation, we get

$$a = \frac{6-0}{30} = 0.2 \text{ m/s}^2;$$

which is positive acceleration.

(ii) Initial velocity, u = 6 m/s, final velocity, v = 4 m/s, time, t = 5 s, then

=

$$a = \frac{v-u}{t} = \frac{4-6}{5} = -0.4 \text{ m/s}^2;$$

which is retardation.

Note : The acceleration of the case (i) is positive and is negative in the case (ii).

EQUATIONS OF MOTION

Motion under uniform acceleration

(a) 1st Equation of motion

Consider a body having initial velocity 'u'. Suppose it is subjected to a uniform acceleration 'a' so that after time 't' its final velocity becomes 'v'. Now we know, alulit.

Acceleration = $\frac{\text{change in velocity}}{\frac{1}{2}}$ Time

$$a = \frac{v - u}{t}$$
or $v = u + at$ (i)

(b) 2nd Equation of motion

Suppose a body has an initial velocity 'u' and uniform acceleration 'a' for time 't' so that its final velocity becomes 'v'. The distance travelled by moving body in time 't' is 's' then the average velocity = (v + u)/2.

Distance travelled = Average velocity × time

$$s = \left(\frac{u+v}{2}\right)t \Rightarrow s = \left(\frac{u+u+at}{2}\right)t \text{ (as } v = u + at)$$
$$s = \left(\frac{2u+at}{2}\right)t \Rightarrow s = \frac{2ut+at^2}{2} \text{ [Ister]}$$
$$s = ut + \frac{1}{2}at^2 \qquad \dots (ii)$$

(c) 3^{rd} Equation of motion

Distance travelled = Average velocity x time

$$s = \left(\frac{u+v}{2}\right)t$$
(iii)

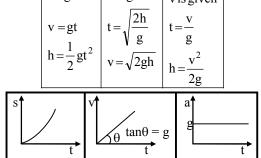
from equation (i) $t = \frac{v-u}{2}$

Substituting the value of t in equation (iii),

we get
$$s = \left(\frac{v-u}{a}\right) \left(\frac{v+u}{2}\right)$$

 $s = \left(\frac{v^2 - u^2}{2a}\right)$
 $\Rightarrow 2as = v^2 - u^2 \text{ or }$
 $v^2 = u^2 + 2as....(iv)$

- The equations of motion under gravity can be obtained by replacing acceleration by acceleration due to gravity (g) and can be written as follows :
- When the body is coming towards the centre of earth


(a)
$$v = u + gt$$

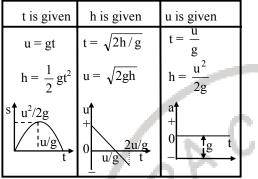
(b) $h = ut + \frac{1}{2}gt^2$
(c) $v^2 = u^2 + 2gh$

When a body is thrown upwards with some initial velocity, then a retardation produced due to attraction of the earth. In equations of motion, a is replaced by (-g) and thus equations become.

(a)
$$v = u - gt$$
 (b) $h = ut - \frac{1}{2}gt^2$
(c) $v^2 = v^2$ 2gh

BODY FALLING FREELY UNDER GRAVITY

Assuming u = 0 for a freely falling body : t is given h is given v is given


0.04

 Body is projected vertically up : Taking initial position as origin and direction of motion (i.e. vertically up) as positive.

(a) At the highest point v = 0

(b) a = -g

- It is clear that in case of motion under gravity
- (a) Time taken to go up is equal to the time taken to fall down through the same distance.
- (b) The speed with which a body is projected up is equal to the speed with which it comes back to the point of projection.
- (c) The body returns to the starting point with the same speed with which it was thrown.
- Ex.10 A body starts moving with an initial velocity 50 m/s and acceleration 20 m/s². How much distance it will cover in 4s ? Also, calculate its average speed during this time interval.
- Sol. Given : u = 50 m/s, a = 20 m/s², t = 4s, s = ? s = ut + $\frac{1}{2}$ at² = 50 × 4 + $\frac{1}{2}$ × 20 × (4)² = 200 + 160 = 360 m Average speed during this interval,

$$\overline{V} = \frac{\text{distance travelled}}{\text{time interval}} = \frac{360}{4} = 90 \text{ m/s}$$

Ex.11 A body is moving with a speed of 20 m/s.
 When certain force is applied, an acceleration of 4 m/s² is produced. After how much time its velocity will be 80 m/s ?

Sol. Given :
$$u = 20 \text{ m/s}$$
, $a = 4 \text{ m/s}^2$,
 $v = 80 \text{ m/s}$, $t = ?$
Using equation, $v = u + at$, we get
 $80 = 20 + 4 \times t$
or $4t = 80 - 20 = 60$

or t = 15 s

Therefore, after 15 seconds, the velocity of the body will be 80 m/s.

Ex.12 A body starts from rest and moves with a constant acceleration. It travels a distance s_1 in first 10 s, and a distance s_2 in next 10 s. Find the relation between s_2 and s_1 .

Sol. Given :
$$u = 0, t_1 = 10 s$$

:. Distance travelled in first 10 seconds, is given by

$$s_1 = ut + \frac{1}{2} at^2 = 0 + \frac{1}{2} \times a \times (10)^2$$

= 50a ...(1)

To calculate the distance travelled in next 10s, we first calculate distance travelled in 20 s and then subtract distance travelled in first 10 s.

$$s = ut + \frac{1}{2} at^2 = 0 + \frac{1}{2} \times a \times (20)^2$$

= 200a ...(2)

Distance travelled in 10th second interval,

$$s_2 = s - s_1 = 200a - 50a$$
 ...(3)
or $s_2 = 150a$

Now,
$$\frac{s_2}{s_1} = \frac{150a}{50a} = \frac{3}{1}$$

or $s_2 = 3s_1$

- Ex.13 A train is moving with a velocity 400 m/s.
 With the application of brakes a retardation of 10 m/s² is produced. Calculate the following :
 - (i) After how much time it will stop ?
 - (ii) How much distance will it travel before it stops?
- Sol. (i) Given: u = 400 m/s, $a = -10 \text{ m/s}^2$, v = 0, t = ?Using equation, v = u + at, we get $0 = 400 + (-10) \times t$
 - or t = 40 s
 - (ii) For calculating the distance travelled, we use equation,

 $v^2 = u^2 + 2as$, we get

 $(0)^2 = (400)^2 + 2 \times (-10) \times s$

- or $20s = 400 \times 400$
- or s = 8000 m = 8 km

11.1.3

- **Ex.14** A body is thrown vertically upwards with an initial velocity of 19.6 m/s. If $g = -9.8 \text{ m/s}^2$. Calculate the following :
 - (i) The maximum height attained by the body.
 - (ii) After how much time will it come back to the ground ?
- **Sol.**(i) Given: u = 19.6 m/s, $g = -9.8 \text{ m/s}^2$, v = 0, h = ?Using equation $v^2 = u^2 + 2gh$, we get

(0)² = (19.6)² + 2(-9.8) × h or $h = \frac{19.6 \times 19.6}{2 \times 9.8} = 19.6 \text{ m}$

(ii) Time taken to reach the maximum height can be calculated by the equation,

$$v = u + gt$$

or
$$0 = 19.6 + (-9.8) \times t$$

or
$$t=2$$

In the same time, it will come back to its original position.

- \therefore Total time = 2 × 2 = 4s
- Ex.15 From the top of a tower of height 490 m, a shell is fired horizontally with a velocity 100 m/s. At what distance from the bottom of the tower, the shell will hit the ground ?
- Sol. We know that the horizontal motion and the vertical motion are independent of each other. Now for vertical motion, we have u = 0, h = 490 m, g = 9.8 m/s², t = ?

Using equation, $h = ut + \frac{1}{2}gt^2$, we get

$$490 = 0 + \frac{1}{2} \times 9.8 \times t^2$$

or
$$t^2 = \frac{490}{4.9} = 100$$

or t = 10 s

- ... It takes 10 seconds to reach the ground. Now, horizontal distance
 - = horizontal velocity \times time
 - $= 100 \text{ m/s} \times 10 \text{ s} = 1000 \text{ m}$
- \therefore The shell will strike the ground at a distance of 100 m from the bottom of the tower.

Oisplacement- time graph :

 The straight line inclined to time axis in s-t graph represents constant velocity.

 In s-t graph the straight line inclined to time axis at angle greater than 90° shows negative velocity

• Body with accelerated motion

ŧ

u sti

- Body with decelerated motion
- Velocity -time graph :
 - For the body having constant velocity or zero acceleration.
 - The body is moving with constant retardation and its initial velocity is not zero.
 - The body is accelerated and the initial velocity is zero.
 - The body is decelerated
- **Acceleration-time graph :**

t →

♦ Acceleration is constant

• Acceleration is increasing and is +ve

• Acceleration is decreasing and is –ve

CIRCULAR MOTION

When a body moves in such a way that its distance from a fixed point always remains constant, then its motion is said to be the circular motion.

Uniform circular motion :

 If the radius vector sweeps out equal angles in equal times, then its motion is said to be uniform circular motion.

- In uniform circular motion speed remains const.
- Linear velocity, being a vector quantity, its direction changes continuously.
- The direction of velocity is along the tangent at every point.

♦ Angular velocity :

- $\omega = \frac{\Delta \theta}{\Delta t}$
- A vector quantity
- Direction is perpendicular to plane of rotation Note : If the particle is revolving in the clockwise direction then the direction of angular velocity is perpendicular to the plane downwards. Whereas in case of anticlockwise direction, the direction will be upwards.
- Unit is Radian/sec.
- In uniform circular motion the direction of angular velocity is along the axis of rotation which is constant throughout.

- Angular velocity remains constant in magnitude as well as in direction.
- $v = r\omega$ where r = radius of the circle.

Centripetal acceleration

- In uniform circular motion the particle experiences an acceleration called the centripetal acceleration.
- $a_c = \frac{v^2}{r}$
- The direction of centripetal acceleration is along the radius towards the centre.

• Centripetal force :

- Always acts towards centre.
- Centripetal force is required to move a particle in a circle.
- Because F_c is always perpendicular to velocity or displacement, hence the work done by this force will always be zero.

Note :

۲

- Circular motion in horizontal plane is usually uniform circular motion.
- Remember that equations of motion are not applicable for circular motion.

Time period :

- It is the time taken to complete one complete revolution.
- In one revolution, angle subtended is 2π and if T is time period, then the angular velocity is given by

$$\Box \Theta = \frac{2\pi}{T} \qquad \text{or} \qquad T = \frac{2\pi}{\omega}$$

- Frequency :
 - Frequency is defined as the number of revolutions per second.

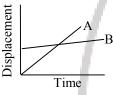
i.e.
$$n = \frac{1}{T} = \frac{\omega}{2\pi}$$

- Ex.16 A particle moves in a circle of radius 2 m and completes 5 revolutions in 10 seconds. Calculate the following :
 - (i) Angular velocity and

(ii) Linear velocity. $v = r\omega = 1.2 \times \frac{\pi}{30} = \frac{\pi}{25}$ Sol. Since, it completes 5 revolutions in 10 seconds. or $v = \frac{\pi}{2s} = 1.266 \times 10^{-1} \text{ cm/sec.}$ \therefore Time period = $\frac{10}{5}$ = 2s Earth revolves around the sun in 365 days. Ex.18 (i) Now angular velocity, $\omega = \frac{2\pi}{T} = \frac{2\pi}{2} =$ Calculate its angular velocity. Sol. Time period, π rad/s T = 365 days(ii) Linear velocity is given by $= 365 \times 24 \times 60 \times 60$ seconds $v = r\omega = 2\pi$ Angular velocity, $\omega = \frac{2\pi}{T}$ \therefore v = 2 π m/s Ex.17 The length of second's needle in a watch is $\frac{2\pi}{365 \times 24 \times 60 \times 60} \quad \text{rad/s} = 1.99 \times 10^{-7} \text{ rad/s}.$ 1.2 cm. Calculate the following : (i) Angular velocity and (ii) Linear velocity of the tip of the needle. Sol. (i) We know that the second's needle in a watch completes one revolution in 60 seconds. \therefore Time period, T = 60 s Angular velocity, $\omega = \frac{2\pi}{T} = \frac{2\pi}{60} = \frac{\pi}{30}$ rad/s (ii) Length of the needle = 1.2 cm = Radius of the11.4circle Linear velocity of the tip of the needle is given by **EXERCISE-1** Very Short Answer Type Questions A. Q.7 A stone is thrown upwards, reaches a height h and comes back. What are the distance moved Can the speed of a body moving with a **Q.1** and displacement? constant velocity change? A particle moves along the circumference of Q.8 Can the velocity of a body moving with a Q.2 a circle in half cycle. Calculate the distance uniform speed change? travelled and displacement. Q.3 Can average velocity of a moving body be zero? Define uniform circular motion. Q.9 Q.4 Can average speed of a moving body be zero? What is the relation between linear velocity 0.10 Q.5 Time-displacement graph is a straight line and angular velocity? parallel to the time axis. What is its velocity

- Q.11 Does uniform circular motion has accelerated motion or no acceleration at all ?
- Q.12 What is the direction of angular velocity ?

Q.6


and the acceleration?

with constant velocity?

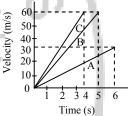
What is the acceleration of a body moving

- Q.13 In uniform circular motion, does the angular velocity remain constant or if changes with time.
- 0.14 A car starts moving with 20 m/s and its velocity becomes 80 m/s after 6 sec. Calculate its acceleration.
- 0.15 A body is thrown vertically up with a velocity 98 m/s. How much high it will rise ? (g = 9.8 m/s^2).
- 0.16 A body falls from a height of 500 m. In how much time, will it strike the ground?
- 0.17 Time-displacement graphs of two bodies A and B are shown in the Figure. Which one has larger velocity?

Q.18 The velocity of a body is 72 km/hr. Calculate its value in m/s.

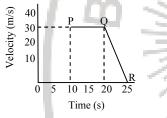
B. Short Answer Type Questions

- 0.19 Define state of motion.
- Differentiate between the following : Q.20
 - (i) speed and velocity,
 - (ii) distance and displacement
- Q.21 Displacement of a body can be zero even when the distance travelled is not zero. Explain.
- **O.22** What do you mean by negative and positive acceleration ? Explain.
- **O.23** A train is moving with a constant speed of 40 km/hr. Draw time-speed graph. From this, draw time-distance graph up to 5 hours from the start.
- **O.24** Draw the graph for uniform motion.
 - (i) Displacement Time
 - (ii) Velocity Time

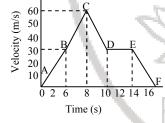

Q.25 In the given figure A and B represent uniform motion or accelerated motion.

Q.26 In the given Figure. What type of motion are represented by the parts AB, BC, CD and DE.

- For a moving body distance travelled is 0.27 directly proportional to the time. What do you Q.28 conclude about its speed?
 - Figure shows the time velocity graphs for three bodies A, B and C.

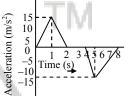

- Which body has minimum acceleration? (i)
- (ii) Which body has maximum acceleration?
- 0.29 A body starting with initial velocity u moves with a constant acceleration a. Find the expression for distance travelled in nth seconds.
- Q.30 A body starting from rest moves with a constant acceleration. It moves a distance s₁ in first 5 seconds and a distance s₂ in next 5 seconds. Prove that $\Delta s_2 = 3s_1$.
- Q.31 An engine is moving with a velocity 44 m/s. After applying the brakes, it stops after covering a distance of 121 m. Calculate retardation and time taken by the engine to stop.
- Q.32 A body is thrown vertically up with an initial velocity of 60 m/s. If $g = 10 \text{ m/s}^2$, at what time, it will be at a height of 100 m.

(1, 0, 0)



Long Answer Type Questions

- **Q.33** What do you mean by average speed ? How will you find average speed from time-distance graph ?
- Q.34 What is the difference between time-speed and time-velocity graph ? In what condition, they are similar ?
- **Q.35** What do you mean by acceleration ? How do you find acceleration from time-velocity graph?
- **Q.36** Time-velocity graph of a body is shown in figure Calculate the following :
 - (i) Distance travelled in first 10 s
 - (ii) Acceleration at t = 15 s
 - (iii) Acceleration between t = 20 s to t = 25s.


Q.37 Time velocity graph of a moving body is shown in figure Calculate the following :

- (i) Change in velocity during t = 6s to t = 8s
- (ii) Average acceleration during t = 10s to t = 12s.
- (iii) In which time interval acceleration will be zero.

(iv) Acceleration during t = 14 s to t = 16 s.

Q.38 Time-acceleration graph of a moving body is shown in figure Calculate the following :

- (i) Time interval in which acceleration will be zero.
- (ii) Acceleration at t = 5 s.
- (iii) Change in velocity during time interval t = 4s and t = 8 s.
- Q.39 An artificial satellite is moving in a circular orbit of radius 42, 250 km. Find its speed if it takes 24 hours to revolve round the earth.
 - On 120 km track, a train travels the first 30 km with a uniform speed of 30 km/h. How fast must the train travel the next 90 km so as to average 60 km/hr for entire trip ?

EXERCISE-2

Q.40

11.11

Single Correct Answer Type Questions

- Q.1 A body whose position with respect to surrounding does not change, is said to be in a state of
 (A) Rest
 (B) Motion
 (C) Vibration
 (D) Oscillation
- Q.2 In case of a moving body-(A) Displacement > Distance

- (B) Displacement < Distance
- (C) Displacement \geq Distance
- (D) Displacement \leq Distance
- **Q.3** Vector quantities are those which have :
 - (A) Only direction
 - (B) Only Magnitude
 - (C) Magnitude and direction both
 - (D) None of these
- Q.4 What is true about scalar quantities ?

- (A) Scalars quantities have direction also.
- (B) Scalars can be added arithmetically.
- (C) There are special laws for scalar addition.
- (D) Scalars have special method to represent.
- Q.5 A body is said to be in motion if -
 - (A) Its position with respect to surrounding objects remains same
 - (B) Its position with respect to surrounding objects keep on changing
 - (C) both (A) and (B) (
 - (D) Neither (A) nor (B)
- Q.6 A distance is always-
 - (A) shortest length between two points
 - (B) path covered by an object between two points
 - (C) product of length and time
 - (D) none of the above
- Q.7 A displacement-(A) is always positive
 - (A) is always positive
 - (B) is always negative
 - (C) may be positive as well as negative (D) is neither positive nor negative
 - (D) is neither positive nor negative
- Q.8 Examples of vector quantities are: (A) velocity, length and mass (B) speed, length and mass (C) time, displacement and mass
 - (D) velocity, displacement and mass
 - (D) velocity, displacement and force
- **Q.9** Which of the following is not characteristic of displacement ?
 - (A) It is always positive.
 - (B) It has both magnitude and direction.
 - (C) It can be zero.
 - (D) Its magnitude is less than or equal to the actual path length of the object.
- Q.10 S.I. unit of displacement is-(A) m (b) ms^{-1} (C) ms^{-2} (D) none of these
- Q.11 Which of the following is not a vector? (A) Speed (B) Velocity (C) Weight (D) Acceleration
- Q.12 Time is an example of:-(A) Scalar

- (C) Scalar or vector(D) Neither scalar nor vector
- Q.13 In five minutes distance between a pole and a car changes progressively. What is true about the car ?
 - (A) Car is at rest

(B) Vector

- (B) Car is in motion
- (C) Nothing can be said with this information
- (D) None of the above
- Q.14 A distance -

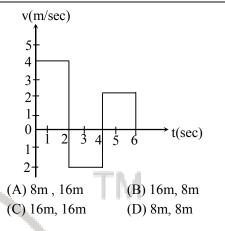
Muhh

- (A) Is always positive
 - (B) Is always negative
 - (C) May be positive as well as negative
 - (D) Is neither positive nor negative
- Q.15 When a body covers equal distance in equal intervals of time, its motion is said to be : (A) Non-uniform
 - (B) Uniform
 - (C) Accelerated
 - (D) Back and forth
- **Q.16** The motion along a straight line is called: (A) Vibratory (B) Stationary
 - (C) Circular (D) Linear
- Q.17 A particle is traveling with a constant speed. This means-
 - (A) Its position remains constant as time passes
 - (B) It covers equal distances in equal interval of time
 - (C) Its acceleration is zero

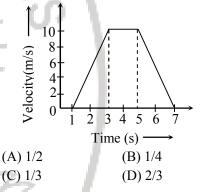
(D) It does not change its direction of motion

- Q.18 The rate of change of displacement is -
 - (A) Speed (B) Velocity
 - (C) Acceleration (D) Retardation
- Q.19 Speed is never -(A) Zero (B) Fraction (C) Negative (D) Positive

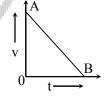
Q.20		body covering different intervals of time is said to		(C) 3	(D) 4				
	be -		Q.29	Out of energy a	nd acceleration which is				
	(A) Zig-Zag	(B) Fast		vector ?					
	(C) Slow	(D) Variable		(A) Acceleration	(B) Energy				
				(C) Both	(D) None of these				
Q.21	Unit of velocity is			(C) Dom					
	(A) ms	(B) ms^{-1}	Q.30	C.G.S. unit of accel	eration is -				
	(C) ms^{-2}	(D) none of these	2.00	(A) ms^{-2}	(B) cm s ^{-2}				
				(C) ms^{-2}	(D) cm s^2				
Q.22	Metre per second i	s not the unit of -		(0) 1115					
			Q.31	A train starting fi	om a railway station and				
	(A) Displacement	(B) Velocity	Q.51	A train starting from a railway station and moving with uniform acceleration, attains a					
	(C) Speed	(D) None of them	- 41 (
			-	speed of 40 km h^{-1} in 10 minutes. Its acceleration is -					
Q.23	-	with a uniform velocity -		(A) 18.5 ms^{-2}	(B) 1.85 cm s^{-2}				
	(A) The particle m		d.r	(C) 18.5 cms^{-2}	(D) 1.85 cm s^{-2}				
		noves along a curved path	1947 - S	(C) 18.5 cms	(D) 1.85 III S				
	· · ·	oves along a circle	0.22	The bushes out	ad to a con maduce o				
	(D) The particle m	oves along a straight line	Q.32		ied to a car produce a $f_{1} = f_{2} + f_{2} + f_{3} + f_{3}$				
0.04			1 3	negative acceleration of 6ms ⁻² . If th stops after 2 seconds, the initial veloc					
Q.24		ue of -6.0 ms^{-1} . It may be	/ 3		nds, the initial velocity of				
	the-		1 8	the car is - $(A) (m - 1)$	(B) 12 ms^{-1}				
	(A) Speed of a part		- 8	(A) 6 ms^{-1}					
	(B) Velocity of a p(C) Position of a pair		N Am	(C) 24 ms ^{-1}	(D) Zero				
	(D) Displacement		0.22	A hadre is marries	with white the value of 10				
	(D) Displacement		Q.33	A body is moving with uniform velocity of 10 ms^{-1} . The velocity of the body after 10 s is -					
Q.25	In 10 minutes a c	ar with speed of 60 kmh ⁻¹	$\mathcal{N}\mathcal{A}$	(A) 100 ms^{-1}	(B) 50 ms ^{-1}				
C	travels a distance of	and the second s	r //	(C) 100 ms^{-1}	(D) 5 ms^{-1}				
	(A) 6 km	(B) 600 km		(C) 10 IIIS	(D) 5 ms				
	(C) 10 km (D) 7 km		Q.34	In 12 minutes a car whose speed is 35 kmh^{-1}					
			Q.54	travels a distance of -					
Q.26	A particle covers	equal distances in equal	100	(A) 7 km					
	intervals of time, i	t is said to be moving with	198	(C) 14 km	(B) 3.5 km (D) 28 km				
	uniform-		and the second	(C) 14 km	(D) 28 km				
	(A) Speed	(B) Velocity	0.25	A hade is marin	lang - studielt line st				
	(C) Acceleration	(D) Retardation	Q.35		g along a straight line at $an approximation of 4 ms^{-2}$				
				20 ms ^{-1} undergoes an acceleration of 4 ms ^{-2} . After 2 s, its speed will be-					
Q.27	The SI unit of the a	average velocity is -		(A) 8 ms^{-1}	(B) 12 ms^{-1}				
-	(A) m/s	(B) km/s		(C) 16 ms^{-1}	(D) 12 ms (D) 28 ms^{-1}				
	(C) cm/s	(D) mm/s		(C) 10 ms	(D) 20 ms				
		× /	Q.36	A car increase its	speed from 20 kmh ⁻¹ to				
Q.28	A car accelerates u	uniformly from 18 km/h to	2.00						
		e acceleration in ms^{-2} is -		50 kmh ⁻¹ in 10 s., its acceleration is - (A) 30 ms ⁻² (B)3 ms ⁻¹					
	(A) 1	(B) 2			0.83 ms^{-2}				
	(1) 1			(C) is ins (D)	0.00 1110				


- Q.37 When the distance travelled by an object is directly proportional to the time, it is said to travel with-
 - (A) zero velocity
 - (B) constant speed
 - (C) constant acceleration
 - (D) uniform velocity
- Q.38 A body freely falling from rest has a velocity v after it falls through a height h. The distance it has to fall further for its velocity to become double is (A) 3 h
 (B) 6 h
 - (C) 8 h (D) 10 h
- **Q.39** The velocity of a bullet is reduced from 200 m/s to 100 m/s while travelling through a wooden block of thickness 10 cm. The retardation, assuming it to be uniform, will be (A) 10×10^4 m/s² (B) 1.2×10^4 m/s² (C) 13.5×10^4 m/s² (D) 15×10^4 m/s²
- Q.40 A body starts falling from height 'h' and travels distance h/2 during the last second of motion. The time of travel (in sec.) is-

(A) $\sqrt{2} - 1$ (B) $2 + \sqrt{2}$ (C) $\sqrt{2} + \sqrt{3}$ (D) $\sqrt{3} + 2$


- Q.41 Area between speed-time graph and time axis gives-(A) Distance (B) Velocity
 - (C) Speed (D) None of these
- Q.42 An object undergoes an acceleration of 8ms⁻² starting from rest. Distance travelled in 1 sec. is-(A) 2 m (B) 4 m

(C) 6 m (D) 8 m


Q.43 The velocity-time graph of a body moving in a straight line is shown in figure. The displacement and distance travelled by the body in 6 second are respectively-

.44 For the velocity time graph shown in figure, the distance covered by the body in the last two seconds of its motion is what fraction of the total distance covered in all the seven seconds ?

Q.45 Velocity-time graph AB (Figure) shows that the body has-

- (A) A uniform acceleration
- (B) A non uniform retardation
- (C) Uniform speed
- (D) Initial velocity OA and is moving with uniform retardation

Q.46 In figure BC represents a body moving-

11.4

			(A) 25 ms^{-2} (B) 15 ms^{-2}				
	tut , , , , , , , , , , , , , , , , , ,		(C) 5 ms^{-2} (D) 1 ms^{-2}				
	Displacement	Q.54	Unit of angular velocity is –				
		-	(A) rad (B) m/s				
			(C) rad/s^2 (D) rad/s				
	0 Time	0.55	True hadiag in simular noths of radii 1 . 2 take				
	(A) Backwards with uniform velocity	Q.55	Two bodies in circular paths of radii 1 : 2 take				
	(B) Forward with uniform velocity		same time to complete their circles. The ratio				
			of their linear speeds is-				
	(C) Backward with non-uniform velocity		(A) 1 : 2 (C) 2 : 1				
	(D) Forward with non-uniform velocity		(C) 1: 3 (D) 3 : 1				
	C						
Q.47	1 [°] is equal to-	Q.56	In a circular path of radius 1 m, a mass of				
	(A) 57.3° (B) 573°	л.	2 kg moves with a constant speed of 10 ms ^{-1} .				
	(C) 180° (D) 360°	M.(The angular speed in radian/sec. is -				
	100	- °O	(A) 5 (B) 10				
Q.48	An athlete complete one round of a circular		(C) 15 (D) 20				
	track of diameter 200 m in 40 s. What will be	L	(C) 15 (D) 20				
	the displacement at the end of 2 minutes 40 s.?	····					
	(A) 2200 m (B) 220 m	Q.57	The relation among v, ω and r is -				
	(C) 22 m (D) Zero	1.1	(A) $\omega = \frac{v}{r}$ (B) $v = \frac{\omega}{r}$				
	(c) 22 m (b) 2010		r r				
Q.49	What will be the distance in the above		(C) $\omega = \frac{r}{d}$ (D) None of these				
C C	question?	100 Marca	(C) $\omega = \frac{1}{v}$ (D) None of these				
	(A) 2512 m (B) 2500 m	- 8					
	(C) 2200 m (D) Zero	Q.58	Uniform circular motion is an example of :				
	(C) 2200 III (D) 2210	Q.30					
Q.50	The distance travelled by a body is directly		(A) Constant acceleration				
Q. 50	proportional to the time, then the body is said	<u> </u>	(B) Variable acceleration				
		ハム	(C) A and B both				
	to have -	· / /	(D) None of these				
	(A) Zero speed (B) Zero velocity	//_					
	(C) Constant speed (D) None of these	Q.59	Rate of change of angular velocity refer to :				
			(A) angular speed				
Q.51	An athlete runs along a circular track of		(B) angular displacement				
	diameter 28 m. The displacement of the	00	(C) angular acceleration				
	athlete after he completes one circle is -	Υŏ.	(D) None of these				
	(A) 28 m (B) 88 m						
	(C) 44 m (D) Zero		() th				
		Q.60	A car travels $\left(\frac{1}{4}\right)^m$ of a circle with radius r.				
Q.52	A boy is running along a circular track of	2.00	(4) of a choice with factors 1.				
	radius 7 m. He completes one circle in 10		The ratio of the distance to its displacement				
	second. The average velocity of the boy is -		is-				
	(A) 4.4 ms^{-1} (B) 0.7 ms^{-1}						
	(C) Zero (D) 70 ms^{-1}		(A) $1:\frac{\pi}{2\sqrt{2}}$ (B) $\frac{\pi}{2\sqrt{2}}:1$				
Q.53	A body is moving with a uniform speed of		(C) $2\sqrt{2}:\pi$ (D) $\pi 2\sqrt{2}:1$				
2.00	5 ms^{-1} in a circular path of radius 5 m. The						
	5 ms m a choulai paul of facilus 5 m. The						

acceleration of the body is:

ANSWER KEY

EXERCISE - 1									
1. no	2.yes	3. yes							
4. no	5. 0, 0	6. 0							
7. 2h, 0	8. πr, 2r	10. $v = r\omega$							
11. accelerated motion	12. along the axis of rotation	13. remains constant							
14. 10m/sec ²	15. 490 m	16. 10s							
17. A	18. 20 m/sec								
27. A \rightarrow uniform motion, B \rightarrow acc	28. (i) A, (ii) C								
31. 8 m/sec ² , 5.5s	32. 2s, 10s	36. (i) 300 m (ii) 0 m/s ² , (iii) –6 m/s ²							
37. (i) 30 m/s, (ii) 0, (iii) 10 to	38. (i) 2 to 4s, (ii) $- 15 \text{ m/s}^2$ (iii) 30 m/s								
39. 3.1 km/sec	40. 90 km/h	0' 1							

EXERCISE - 2

 $(1, 1)^{\dagger}$

						1									
Ques	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans	Α	D	С	В	В	В	С	D	Α	Α	Α	Α	В	Α	В
Ques	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans	D	В	В	С	D	В	A	D	В	С	Α	Α	Α	Α	В
Ques	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans	В	В	С	Α	D	D	В	A-	_D	В	Α	В	Α	В	D
Ques	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans	Α	Α	D	Α	С	D	C	С	D	Α	В	Α	В	С	В