

Q.4 The probability of choosing a vowel from the set of English alphabets is _____

(1)

A) $\frac{3}{26}$	B) $\frac{5}{26}$
C) $\frac{2}{26}$	D) $\frac{2}{13}$

Let S be the total number of English alphabets which are 26. n(S) = 26 Let A be the event of choosing a vowel which are 5. n(A) = 5 $P(A) = \frac{n(A)}{n(S)} = \frac{5}{26}$ Ans : B

Q.5 There are 20 boys and 15 girls in a class of 35 student. A student is chosen at random. The **(1)** probability od choosing a boy is _____

A) $\frac{4}{7}$	B) $rac{7}{4}$
C) $\frac{5}{4}$	D) $\frac{4}{5}$

Let S be the total number of student in class.

n(S) = 35

Let A be the event of selecting a boy.

n(A) = 20

$$P(A) = \frac{n(A)}{n(S)} = \frac{20}{35} = \frac{4}{7}$$

Ans : A

Q.6 The probability of getting a black king from a pack of 52 cards is _____ (1)

A) $\frac{4}{13}$	B) $rac{13}{52}$
C) $\frac{2}{52}$	D) $\frac{1}{5}$

Let S be the sample space. Total number of cards 52. n(S) = 52 Let A be the event of getting a black king which are 2 n(A) = 2 $P(A) = \frac{n(A)}{n(S)} = \frac{2}{52}$

Ans:C

Q.7 There are 7 rotten apples in a basket containing 35 apples. the probability of getting good (1) apple is _____

A) $\frac{7}{28}$	B) $rac{21}{35}$
C) $\frac{35}{28}$	D) $\frac{28}{35}$

Number of apples = 35 Number of roten apples = 7 Number of good apples = 35 - 7 = 28 Let S be the event of number of and A be the event of selecting a good apple. n(S) = 35, n(A) = 28 $P(A) = \frac{n(A)}{n(S)} = \frac{28}{35}$ Ans : D

Q.8 An integer is chosen from the first twenty natural number. The probability of getting a prime (1) number _____

A) $\frac{8}{20}$	B) $\frac{9}{20}$
C) $\frac{15}{20}$	D) $\frac{10}{20}$

Let A be the event of getting a prime number. A = { 2, 3, 5, 7, 11, 13, 17, 19) n(A) = 8 P(A) = $\frac{n(A)}{n(S)} = \frac{8}{20}$ Ans : A

- Q.9 Which number cannot represent a probabilty?
 - A) $\frac{2}{3}$ B) 1.5C) 15 %D) 0.7

Q.10	If n(A) = 2, $ ext{ } \operatorname{p}(ext{A}) = rac{1}{5},$ then n(S) =		
	A) 10	B) $\frac{5}{2}$	
	C) $\frac{2}{5}$	D) $\frac{1}{3}$	

P(A) =
$$\frac{n(A)}{n(S)}$$

 $\frac{1}{5} = \frac{2}{n(S)}$
∴ n(S) = 2 × 5 = 10
Ans : A

Q.11 There are 40 cards in a bag. Each bears a number from 1 to 40. One card is drawn at random. (1) What is the probability that the card bears a number which is a multiple of 5 ?

A) $\frac{1}{5}$	B) $rac{3}{5}$
C) $\frac{4}{5}$	D) $\frac{1}{3}$

n(S) = 40 A = { 5, 10, 15, 20, 25, 30, 35, 40} n(A) = 8 \therefore P(A) = $\frac{n(A)}{n(S)} = \frac{8}{40} = \frac{1}{5}$ Ans : A

Q.12 What is the probability of the event that a number chosen from 1 to 100 is a prime number? (1)

A)
$$\frac{1}{5}$$
 B) $\frac{6}{25}$
C) $\frac{1}{4}$ D) $\frac{13}{50}$

A = There are 25 prime number. n(A) = 25 Sample space n(S) = 100 $P(A) = \frac{n(A)}{n(S)} = \frac{25}{100} = \frac{1}{4}$ Ans : C

Q.13 A die is rolled. What is the probability that the number appearing on upper face is less than 3 (1) ?

A)
$$\frac{1}{6}$$
 B) $\frac{1}{3}$

 C) $\frac{1}{2}$
 D) 0

(1)

(1)

	Sample space	= {1, 2, 3, 4,	, 5, 6}	
	\therefore n(S) A = No appear	= 6 ing on upp	er face is < 3	
	\therefore A = {1, 2}			
	∴ n(A) = 2	n(A)		
	$\therefore P(A) = \frac{1}{2}$	$\frac{n(A)}{n(S)} = \frac{2}{6} =$	$=\frac{1}{3}$	
	Ans:B			
Q.14	If A is an event	of a sample	e space S then P(A) =	(1)
	A) $\frac{n(A)}{n(S)}$	B) $\frac{1}{n(S)}$		
	C) $\frac{n(S)}{(S)}$	D) $\frac{1}{(1)}$		
	-, n(A)	n(A)		
	Ans:A			
Q.15	Probability of a	n impossib	le event is	(1)
	A) $\frac{1}{2}$	B) 1		
	C) 0	D) –1		
	Impossible even Hence the prob occurrence is 0 Ans : C	nt is an eve bability of	ent that is non existing. There is no possibility that it can happen.	
Q.16	Probability of a	uncertain	event is	(1)
	A) –1	B) 0		
	C) $\frac{1}{2}$	D) 1		
	Ans:B			
Q.17	A subset of a sa	ample spac	e is called	(1)
	A) an event	B) outco	me	
	C) Probability	D) rando	experiment	
	Ans:A			
Q.18	When an unbia	sed dice is	thrown n(S) is	(1)
	A) 2	B) 4		
	C) 6	D) 8		
	Unbiased dice i Sample space = \therefore n(A) = 6 Ans : C	s thrown. - {1, 2, 3, 4,	5, 6}	
Q.19	A die is thrown. If A is the event of getting a score on the upper surface which is divisible by 5 (1) then A is			
	A) a certain eve	ent	B) an impossible event	
	C) an elementa	ary event	D) mutually exclusive event.	
	Ans:C			

Q.20 A bag contains 3 red balls, 4 blue balls and 5 green balls. What is the probability that a ball (1) picked up at random is not a blue ball?

A) $\frac{1}{4}$	B) $rac{1}{3}$
C) $\frac{2}{3}$	D) $\frac{3}{4}$

Sample space = { R_1 , R_2 , R_3 , B_1 , B_2 , B_3 , B_4 , G_1 , G_2 , G_3 , G_4 , G_5 }

 \therefore n(S) = 12 A is the event that ball picked up random is not a blue ball.

A = { R₁, R₂, R₃, G₁, G₂, G₃, G₄, G₅} ∴ n(A) = 8 P(A) = $\frac{n(A)}{n(S)} = \frac{8}{12} = \frac{2}{3}$ Ans : C

Q.21 Two dice are rolled simultaneously. A is an event that product of numbers on the uppermost (1) face is 12 then P(A) = ?

A) <u>1</u>	B) $rac{1}{3}$
C) $\frac{2}{9}$	D) $\frac{2}{3}$

Sample Space (S) = { (1, 1), (1, 2), (1, 3), (1, 4) (1,5), (1, 6), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (5

 $\begin{array}{l} (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (5, 6), (5, 1), (5, 2), (5, 3), (5, 5), (5, 6), (5, 6), (5, 1), (5, 2), (5, 3), (5, 5), (5, 6), (5, 6), (5, 1), (5, 2), (5, 3), (5, 5), (5, 6), (5, 6), (5, 1), (5, 2), (5, 3), (5, 5), (5, 6), (5, 6), (5, 1), (5, 2), (5, 3), (5, 5), (5, 6), (5, 6), (5, 1), (5, 2), (5, 3), (5, 5), (5, 6), (5, 6), (5, 1), (5, 2), (5, 3), (5, 3), (5, 6),$

Q.22 An unbiased die is thrown. A is the event that a prime number comes up, then A = ? (1)

A) {1, 2, 3, 5}	B) {2, 3, 5}
C) {1, 3, 5}	D) {1, 2, 3}

A die is thrown. Sample space = { 1, 2, 3, 4, 5, 6} \therefore n(S) = 6 A is the event getting prime number. A = {2, 3, 5} \therefore n(A) = 3 **Ans :** B

Q.23 2 coins are tossed. A is the event of getting at the most one head then A = ?
A) {HH, HT, TH, TT}
B) [HH, HT, TH}
C) {HT, TH, TT}
D) {HT, TH}

Two coin are tossed. Sample space = { HH, HT, TH, TT} \therefore n(S) = 4 A is event getting atmost one head. A = {HT, TH, TT} **Ans :** C

Q.24 A card is drawn at random from a well-shuffled pack of 52 cards. The probability that the card drawn is a diamond is _____

A) $\frac{1}{52}$	B) $rac{13}{52}$
C) $\frac{26}{52}$	D) $\frac{39}{52}$

A card is drawn at random from a pack of well shuffled 52 playing cards.

∴ n(S) = 52

Let A is the event getting diamond.

A = 13 Diamonds cards. $P(A) = \frac{n(A)}{n(S)} = \frac{13}{52}$

 $I(R) = {}_{n(S)} = {}_{52}$ Ans : B

Q.25 A card is drawn from a pack of cards. The probability of getting a black card is ______

(1)

A) $\frac{1}{52}$	B) $\frac{13}{52}$
C) $\frac{26}{52}$	D) $\frac{39}{52}$

A card is drawn at random from a pack of well shuffled 52 playing cards.

∴ n(S) = 52

Let A is the event getting black cards.

A = 13 club cards + 13 spade cards .

= 26 black cards $P(A) = \frac{n(A)}{n(S)} = \frac{26}{52}$

Ans:C

Q.26 2 digit numbers are formed from the digits 0, 1, 2, 3, 4 where digits are not repeated. B is the event that the number formed is greater than 40, then n(B) is _____

A) 5	B) 4
C) 3	D) 2

A two digit number is formed from digits 0, 1, 2, 3, 4 [Repetition is not allowed] Sample space = $\{10, 12, 13, 14, 20, 21, 23, 24, 30, 31, 32, 34, 40, 41, 42, 43\}$ \therefore n(S) = 16 B is the event that getting number is greater than 40 B = $\{41, 42, 43, \}$ \therefore n(B) = 3 **Ans :** C

Q.27 A box contains 20 cards, numbered from 1 to 20. One card is drawn at random. B is the event (1) that the card drawn bears a number which is a perfect square, then n(B) is _____

A) 3	B) 4
C) 5	D) 6

	A box contain 2 Sample space \therefore n(S) = 20 B is the event g B = {1, 4, 9, 16} Ans : B	20 tickets. = 20 getting perfect square. ∴ n(B) = 4	
Q.28	A die is thrown	n, the probability of getting a perfect square is	(1)
	A) $\frac{1}{2}$	B) $\frac{1}{3}$	
	C) 1	D) $\frac{5}{6}$	
	A die is thrown Sample space = \therefore n(S) = 6 A is the event g A = {1, 4} P(A) = $\frac{n(A)}{n(S)}$ Ans : B	n. = {1, 2, 3, 4, 5, 6} getting perfect square n(A) = 2 $= \frac{2}{6} = \frac{1}{3}$	
Q.29	Two coins are t	tossed then the probability that at least one head turns up is	(1)
	A) 0	B) $\frac{1}{4}$	
	C) $\frac{3}{4}$	D) 1	
	Two coins are to Sample space \therefore n(S) = 4 A is the event to A = { HH, HT, TH P(A) = $\frac{n(A)}{n(S)}$ Ans : C	tossed. = {HH, HT, TH, TT} that atleast one head. H} \therefore n(A) = 3 = $\frac{3}{4}$	
Q.30	A coin is tossed event number	d and a die is thrown simultaneously. A is an event of getting a head and an then n(A) is	(1)
	A) 2 C) 4	B) 3 D) 6	
	Coin and die to Sample space = ∴ n(S) = 12 A is the event g	pssed simultaneously = {H ₁ , H ₂ , H ₃ , H ₄ , H ₅ , H ₆ , T ₁ , T ₂ , T ₃ , T ₄ , T ₅ , T ₆ } getting head & even number.	
	A = { H ₂ , H ₄ , H	6 [}]	
	∴ n(A) = 3		

∴ n(A) = **Ans :** B

A bag contains 3 red, 3 white and 3 green balls. One ball is drawn at random. E is the event Q.31 (1) that the ball drawn is red then n(E) is _____

A) 1 B) 3 C) 6 D) 9

Sample space = { R_1 , R_2 , R_3 , W_1 , W_2 , W_3 , G_1 , G_2 , G_3 } n(S) = 9E is the event that ball drawn is red. $E = \{R_1, R_2, R_3\}$ ∴ n(E) = 3 Ans: B Q.32 (1) Two dice are thrown simultaneously. E is the event that sum of numbers on the uppermost face is at least 10 then n(E) is _____ A) 2 B) 4 C) 6 D) 8 Two dice are thrown simultaneously : Sample Space (S) = { (1, 1), (1, 2), (1, 3), (1, 4) (1,5), (1, 6), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (3,1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 5), (5, 6), (5, 7), 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6) } : n(S) = 36 E is the event that sum of no. on the uppermost face is atleast 10 $E = \{ (4, 6), (5, 5), (5, 6), (6, 4), (6, 5), (6, 6) \}$ n(E) = 6·.

Q.33 3 coins are tossed simultaneously A is the event of getting no head then P(A) is _____ (1)

A) $\frac{1}{8}$	B) $rac{3}{8}$
C) $\frac{5}{8}$	D) $rac{7}{8}$

Three coins tossed simultaneously Sample space = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

∴ n(S) = 8

A is the event getting no head

A = {TTT}

$$\therefore$$
 P(A) = $\frac{n(A)}{n(S)} = \frac{1}{8}$
Ans: A

Q.34 Number of face cards in a pack of cards is _____

A) 106	B) 12
C) 14	D) 16

Face Cards = 4 Kings + 4 Queens + 4 Jacks = 12

Ans : B

Q.35 When 3 coins are tossed simultaneously the number of elements in the sample space is (1)

(1)

A) 2	B) 4
C) 6	D) 8

```
When 3 coin tossed simultaneously
Sample space = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}
∴ n(S) = 8
Ans: D
```