

EXERCISE # 1

Very Short Answer Type Questions

- Q.1 Express the following in the form of p/q.
 - (i) $.\overline{3}$
- (ii) $\overline{.37}$
- **Q.2** Write two irrational numbers between 0.2 and 0.21.
- Write three irrational numbers between **Q.3** 0.202002000200002...and 0.203003000300003...
- Write three irrational numbers between $\sqrt{3}$ **Q.4** and $\sqrt{5}$.
- Find two irrational numbers between 0.5 and **Q.5** 0.55.
- **Q.6** Find two irrational numbers lying between 0.1 and 0.12.
- Given a rational approximation of $\sqrt{3}$ correct **Q.7** to two places of decimals.
- **Q.8** In the following express the result in the simplest form: $\sqrt[3]{108a^4b^3}$
- Express as a pure surd : $\frac{1}{3}\sqrt[3]{54}$ **Q.9**
- Simplify: $2.\sqrt[3]{40} + 3.\sqrt[3]{625} + 4.\sqrt[3]{320}$ **O.10**
- Simplify: $(3\sqrt{5} 2\sqrt{3})(3\sqrt{5} + 2\sqrt{3})$ Q.11
- Simplify: $\sqrt{m^2n^2} \times \sqrt[6]{m^2n^2} \times \sqrt[3]{m^2n^2}$ 0.12

- Simplify: $\sqrt[5]{4\sqrt{(2^4)^3}} 5\sqrt[5]{8} + 2\sqrt[4]{5\sqrt{(2^3)^4}}$ Q.13
- If $\sqrt{3} = 1.732$, find the value of $\frac{2}{\sqrt{3}}$. Q.14

В. **Short Answer Type Questions**

- Q.15 Which of the following is
 - (i) rational
- (ii) irrational number
- (A) $(2+\sqrt{3})^2$ (B) $(3+\sqrt{4})^2$
- Given that $\sqrt{3} = 1.732$, find the value of $\sqrt{75} + \frac{1}{2} \sqrt{48} - \sqrt{192}$.
- **Q.17** Determine a and b if $\frac{5+\sqrt{3}}{7-4\sqrt{3}} = 94 \text{ a} + 3\sqrt{3} \text{ b}$.
- If $\sqrt{5} = 2.236$ and $\sqrt{6} = 2.449$, find the value Q.18 of $\frac{1+\sqrt{2}}{\sqrt{5}+\sqrt{3}} + \frac{1-\sqrt{2}}{\sqrt{5}-\sqrt{3}}$
 - **Q.19** If $x = 7 + 4\sqrt{3}$, find the value of $\sqrt{x} + \frac{1}{\sqrt{x}}$.
 - **Q.20** If $p = 3 2\sqrt{2}$, determine $p^2 + \frac{1}{n^2}$.
 - Q.21 Find the simplest rationalising factor of $\sqrt{5} + \sqrt{3} + 2$
 - Simplify: $3\sqrt{2} + \sqrt[4]{64} + \sqrt[4]{2500} + \sqrt[6]{8}$. 0.22
 - Q.23 Simplify and express the results in simplest form: $\frac{\sqrt{x^2-y^2}+x}{\sqrt{x^2+y^2}+y} \div \frac{\sqrt{x^2+y^2}-y}{\sqrt{x^2-y^2}}$.

Q.24 Evaluate: $\sqrt{5+2\sqrt{6}}$.

C. Fill in the Blanks

- Q.25 Every point on the number line corresponds to a number which may be either or
- Q.26 The decimal form of an irrational number is neither nor
- Q.27 The decimal representation of the rational number $\frac{8}{27}$ is
- Q.28 0 is a/an number (Rational /Irrational)
- **Q.29** The decimal equivalent to $\frac{7}{12}$ is
- **Q.30** The decimal equivalent to $\frac{49}{396}$ is
- Q.31 The common fraction equivalent to 0.09375 is
- Q.32 The common fraction equivalent to $0.4\overline{312}$ is
- Q.33 Every real number is either number or number.

D. True/False Type Questions

- **Q.34** The sum of two rational numbers is rational.
- Q.35 The sum of two irrational numbers is irrational.

- **Q.36** The product of two rational numbers is rational.
- Q.37 The product of two irrational numbers is irrational.
- **Q.38** The sum of a rational number and an irrational number is irrational.
- **Q.39** The product of a nonzero rational number and an irrational number is a rational number.
- **Q.40** Every real number is rational.
- **Q.41** π is irrational and $\frac{22}{7}$ is rational.
- Q.42 Every rational number must be a whole number.
- **Q.43** The number zero is both positive and negative.
- **Q.44** The sum of the two prime numbers is always even.
- **Q.45** The product of two odd numbers is always odd.
- Q.46 A number of three digits has for its middle digit, the sum of the other two digits. Then the number must be a multiple of 11.
- Q.47 If $u = x^2 y^2$ is an even number, where x and y are whole numbers, then u must be a multiple of 4.
- Q.48 The distance between the points a and b on the number line is equal to |b-a|.

ANSWER KEY

A. VERY SHORT ANSWER TYPE:

1. (i)
$$\frac{1}{3}$$
 (ii) $\frac{37}{99}$

2. 0.2010010001......, 0.2020020002.....

3. 0.20201001000100001....., 0.202020020002..., 0.202030030003......

4. 1.8010010001......, 1.9010010001....., 2.010010001......

5. 0.501001001...... and 0.5020020002......

6. 0.10100100010000...... and 0.1020020002......

8. 3ab
$$\sqrt[3]{4a}$$

9.
$$\sqrt[3]{2}$$

10.
$$35\sqrt[3]{5}$$

12.
$$m^2n^2$$

13.
$$-2.\sqrt[5]{8}$$

B. SHORT ANSWER TYPE:

(b) rational

17.
$$a = \frac{1}{2}$$
, $b = 9$

18.
$$-0.213$$

21.
$$(2+\sqrt{3}-\sqrt{5})$$
 $(1-2\sqrt{3})$

22.
$$11\sqrt{2}$$

23.
$$\frac{y^2}{x^2}$$

24.
$$\sqrt{3} + \sqrt{2}$$

C. FILL IN THE BLANKS:

25. real, rational number, an irrational number

26. terminating, recurring

30. 0.12
$$\overline{37}$$

31.
$$\frac{3}{32}$$

32.
$$\frac{718}{1665}$$

33. rational, irrational

D. TRUE/FALSE TYPE:

34. True

35. False

36. True

37. False

38. True

39. False

40. False

41. True

42. False

43. False

44. False

45. True

46. True

47. True

48. True

EXERCISE #2

Which of the following statements are True/False. (Q. 1 to 13)

- Q.1 Every natural number is a whole number.
- **Q.2** Every whole number is an integer.
- Q.3 Every whole number is a natural number.
- **Q.4** Collection of whole numbers is denoted by W.
- Q.5 Collection of integers is denoted by N.
- **Q.6** A real number is a rational number.
- Q.7 Every point on the number line is a real number.
- **Q.8** Reciprocal of an irrational number is an irrational number.
- Q.9 Every real number can be expressed in the form $\frac{p}{q}$ where p and q are integers and $q \neq 0$.
- **Q.10** Square root of every natural number is an irrational number.
- **Q.11** Every rational number can be expressed in the form of terminating decimal expansion.

- **Q.12** Decimal expansion of $\frac{2}{7}$ is of recurring form.
- Q.13 The number 0.21211211121111......is an irrational number.
- Q.14 Express the rational number $\frac{1}{27}$ in recurring decimal form by using the recurring decimal expression of $\frac{1}{3}$. Hence write $\frac{59}{27}$ in recurring decimal form.
- **Q.15** Express in $\frac{p}{q}$ form
 - (i) 2.124,
- (ii) 0.237
- Q.16 Express $\frac{1}{37}$ in decimal form and hence write the decimal expansion of $\frac{79}{37}$.
- **Q.17** Visualize the position of 5.665 on the number line, through successive magnification.

- Visualize the representation of $1.\overline{3}$ on the Q.18 number line upto 4 decimal places, that is, upto 1.3333. Further locate 1.33333.
- Express $\sqrt{3.5}$ geometrically. Q.19
- Express $\sqrt{5.42}$ geometrically and represent it 0.20 on the number line.
- By taking $\pi = 3.141$ and $\sqrt{2} = 1.414$, Q.21 evaluate $\frac{2\pi + 3\sqrt{2}}{5}$ upto three places of decimals.
- Simplify the following expressions: Q.22

(i)
$$(2\sqrt{2} + 5\sqrt{3}) + (\sqrt{2} - 3\sqrt{3})$$

(ii)
$$(3+\sqrt{3})(2+\sqrt{2})$$

(iii)
$$(3+\sqrt{5})(3-\sqrt{5})$$

- If $a = 2 + \sqrt{3} + \sqrt{5}$ and $b = 3 + \sqrt{3} \sqrt{5}$. Q.23 prove that $a^2 + b^2 - 4a - 6b - 3 = 0$.
- If $x = \sqrt{3} + 2\sqrt{2}$ and $y = \sqrt{3} 2\sqrt{2}$, evaluate $x^4 + v^4 + 6x^2v^2$
- **Q.25** If $x = 1 \sqrt{2}$, find the value of

(i)
$$x + \frac{1}{x}$$
 (ii) $x - \frac{1}{x}$

(ii)
$$x - \frac{1}{x}$$

(iii)
$$x^2 + \frac{1}{x^2}$$
 (iv) $x^2 - \frac{1}{x^2}$

(iv)
$$x^2 - \frac{1}{x^2}$$

- (v) $x^4 + \frac{1}{x^4}$ (vi) $x^4 \frac{1}{x^4}$
- For the identity $\frac{7+\sqrt{5}}{7-\sqrt{5}} \frac{7-\sqrt{5}}{7+\sqrt{5}} = a + 7\sqrt{5}b$, Q.26 determine the rational numbers a and b.
- Q.27 Simplify the following expressions:

(i)
$$\frac{1}{\sqrt{2}+1} + \frac{1}{\sqrt{3}+\sqrt{2}} + \frac{1}{\sqrt{4}+\sqrt{3}} + \frac{1}{\sqrt{5}+\sqrt{4}}$$

(ii)
$$\frac{1}{\sqrt{2}+1} + \frac{1}{\sqrt{3}+2} + \frac{2}{\sqrt{5}+3} + \frac{2}{\sqrt{5}-3}$$

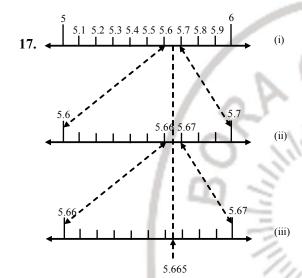
Q.28 Simplify:

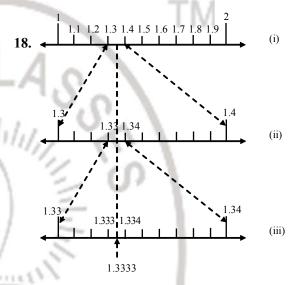
Millely

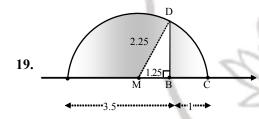
- (i) $(9)^{\frac{9}{2}}$ (ii) $(9)^{-\frac{3}{2}}$ (iii) $(25)^{\frac{3}{2}}$
- (iv) $(36)^{\frac{3}{2}}$ (v) $(49)^{-\frac{3}{2}}$ (vi) $(.0001)^{-\frac{3}{4}}$
- Q.29 Simplify:

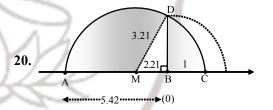
(i)
$$\left(\frac{243}{32}\right)^{-\frac{4}{5}}$$
 (ii) $\sqrt[3]{(343)^{-2}}$

Q.30 If $a^x = b$, $b^y = c$ and $c^z = a$, then prove that xyz = 1. Here a, b, c are positive real numbers and x, y, z are rational numbers.




ANSWER KEY


- 1. True
- 2. True
- 6. False
- 5. False 9. False
- 10. False
- **13.** True


14. 0.037, 2.185

- 3. False
- 7. True
- 11. False
- **15.** (i) $\frac{2122}{999}$ (ii) $\frac{47}{198}$
- 4. True
- 8. True
- **12.** True
- **16.** 0.\overline{0.027}, 2.\overline{135},

- **21.** 2.105 (approx)
- **22.** (i) $3\sqrt{2} + 2\sqrt{3}$ (ii) $6 + 3\sqrt{2} + 2\sqrt{3} + \sqrt{6}$ (iii) 4
- **24.** 585
- **25.** (i) $-2\sqrt{2}$, (ii) 2, (iii) 6, (iv) $-4\sqrt{2}$, (v) 34, (vi) $-24\sqrt{2}$

- **26.** $a = 0, b = \frac{1}{11}$
- **27.** (i) $\sqrt{5} 1$, (ii) $1 + \sqrt{2} \sqrt{3} \sqrt{5}$
- **28.** (i) 27, (ii) $\frac{1}{27}$, (iii) 125, (iv) 216, (v) $\frac{1}{343}$, (vi) 1000

29. (i) $\frac{16}{81}$, (ii) $\frac{1}{49}$

